Normal view MARC view ISBD view

Causality: Models, Reasoning and Inference

By: Pearl, Judea.
Material type: materialTypeLabelBookPublisher: Cambridge, Cambridge University Press, 2009Description: 464 pages.ISBN: 978-0-521-89560-6.Subject(s): causality | cognitive science | econometrics | philosophy | statistics | probability language | epidemiology | counterfactual reasoningOnline resources: Publisher's website Summary: This book seeks to integrate research on cause and effect inference from cognitive science, econometrics, epidemiology, philosophy, and statistics. It puts forward the work of its author, his collaborators, and others over the past two decades as a new account of cause and effect inference that can aid practical researchers in many fields, including econometrics. Pearl adheres to several propositions on cause and effect inference. Though cause and effect relations are fundamentally deterministic (he explicitly excludes quantum mechanical phenomena from his concept of cause and effect), cause and effect analysis involves probability language. Probability language helps to convey uncertainty about cause and effect relations but is insufficient to fully express those relations. In addition to conditional probabilities of events, cause and effect analysis requires graphs or diagrams and a language that distinguishes intervention or manipulation from observation. Cause and effect analysis also requires counterfactual reasoning and causal assumptions in addition to observations and statistical assumptions.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
Monography Library
C1 110 (Browse shelf) Checked out 31.08.2023 00140997

This book seeks to integrate research on cause and effect inference from cognitive science, econometrics, epidemiology, philosophy, and statistics. It puts forward the work of its author, his collaborators, and others over the past two decades as a new account of cause and effect inference that can aid practical researchers in many fields, including econometrics. Pearl adheres to several propositions on cause and effect inference. Though cause and effect relations are fundamentally deterministic (he explicitly excludes quantum mechanical phenomena from his concept of cause and effect), cause and effect analysis involves probability language. Probability language helps to convey uncertainty about cause and effect relations but is insufficient to fully express those relations. In addition to conditional probabilities of events, cause and effect analysis requires graphs or diagrams and a language that distinguishes intervention or manipulation from observation. Cause and effect analysis also requires counterfactual reasoning and causal assumptions in addition to observations and statistical assumptions.

There are no comments for this item.

Log in to your account to post a comment.
Open Library:
Deutsche Post Stiftung
 
Istitute of Labor Economics
 
Institute for Environment & Sustainability
 

Powered by Koha